THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Кажется, так просто – щелкнул, получил снимок, и нет проблем. В действительности за те несколько мгновений, которые проходят с момента спуска затвора до проявления изображения на мониторе, внутри фотоаппарата происходит целый ряд сложных процессов, результатом которых является цифровая фотография. Попробуем разобраться, как же происходит превращение простых световых излучений в цифровое изображение, которое будет напоминать нам о приятно проведенных мгновениях и счастливых событиях в нашей жизни.

Рассмотрим поэтапно путь фотона до его преобразования в цифровое фото.

Объектив

Объектив – это элемент, находящийся на пути фотона к матрице. Он собран из линз, образующих оптические системы. Аппараты различаются по количеству линз, которое в самых совершенных моделях может достигать 18. А количество систем колеблется от двух до пяти. Объектив захватывает фотоны и направляет к матричным сенсорам. Размеры объектива прямо пропорциональны размерам матрицы. Совмещение, например, однодюймовой матрицы и линз малого размера даст темное и нечеткое изображение, так как маленькие линзы препятствуют проникновению света. Чтобы избежать этого, профессиональные фотографы прибегают к проверенной хитрости: низкое число апертуры при большой выдержке приводит к раскрытию диафрагмы, что способствует попаданию большего количества света через линзы на матрицу. В результате получается структурированное выделение фотографируемого объекта на смазанном фоне – лучшие критерии портретной съемки. Именно таким способом профессиональным фотографам удается выделить определенного человека на общем фоне толпы. Таким образом, путем регулировки параметров объектива можно достичь точечной фокусировки – пространство вокруг точки фокуса, чем дальше, тем больше расплывается.

Матрица

Матрица – основной элемент в процессе получения цифровых изображений. Она является подобием пленочного кадра. Фотоны, попадающие на поверхность матрицы, превращаются в электрозаряды посредством матричных сенсоров. Существует два вида сенсоров:
- CMOS
- CCD.

CMOS обладает гибкой манипулирующей системой. Он способен обрабатывать информацию в любом направлении на плоскости, параллельно процессу загрузки фотонов. CCD более примитивен. Он обрабатывает информацию лишь после окончания загрузки изображения. Производство CCD – дорогостоящий процесс с использованием сложнейших технологий. Тогда как CMOS более прост в исполнении и не требует сверхзатрат.

Матрица состоит из бесчисленного множества полупроводниковых светочувствительных частиц - пикселей или фотодатчиков, образующих изображение. Каждый фотодатчик включает три фотодиода, различающих три основных цвета: синий, зеленый и красный. Эти фотодиоды фиксируют количество фотонов света, попавших на них через объектив, и генерируют сигнал, прямо пропорциональный количеству принятого света.

Аналого-цифровой преобразователь

Для трансформации полученной аналоговой информации в цифровую фотоаппарат оснащен специальным устройством – ADC, которое считывает количество цветных фотонов в каждом пикселе, и присваивает числовую конфигурацию получившемуся цвету. Результатом получившейся совокупности чисел является фотоизображение. Эта информация переходит в буфер, где происходит ее фиксация на карте памяти.

Карта памяти

Скорость работы фотоаппарата зависит от всех вышеперечисленных элементов, а также от параметров карты памяти и ее способности принимать изображение, переданное из буфера. Карты памяти существуют во множестве форматов. Единицей скорости является мегабайт/сек, как на обычном CD-ROM. Недавно была презентована сверхскоростная карта памяти для профессиональных фотокамер – XQD со скоростью 16 и 32 Гбайт/сек.

Общепринятым стандартом является запись изображения в формате JPEG. Этот формат доступен для любой программы, предназначенной для просмотра фотоизображений, а также для их печатания.

Менее распространенный формат RAW индивидуален для каждой отдельной камеры. Он представляет “сырое”, не обработанное фотоизображение. Полученный результат – это непосредственный отпечаток матрицы. Формат RAW можно подвергать редактированию, что невозможно с JPEG, поэтому он более популярен среди профессионалов. Он позволяет вручную выправлять такие параметры изображения, как экспозицию, температуру и баланс белого.

Таким образом, кажущееся таким простым появление фотографии в реальности является сложным и деликатным процессом.


  • Каждый заядлый кошатник не упустит шанса сфотографировать своих любимых питомцев и хочет сделать снимки особенно эффектными, как бы сделанными рукой...


  • Съемка имеет свою техническую сторону – композицию, осуществляемую по строго выверенным законам, которые, однако, являются весьма субъективными, так как от них зависит восприятие...


  • 1) стираются все данные
    2) производится полная проверка диска
    3) производится очистка каталога диска
    4) диск становится системным
    12. В многоуровневой иерархической файловой системе...
    1) Файлы хранятся в системе, представляющей собой систему вложенных папок
    2) Файлы хранятся в системе, которая представляет собой линейную последовательность

    13. Путь к файлу:
    1) это поименованная область на диске;
    2) это последовательность из имен каталогов, разделенных знаком «\»;
    3) это список файлов, собранных в одном каталоге;
    4) это список имен каталогов, собранных в корневом каталоге.

    14. В процессе архивации файлы…
    1. Сжимаются без потери информации
    2. Перемещаются на свободные сектора
    3. Копируются в другую папку
    4. Удаляются из каталога
    15. В процессе дефрагментации диска каждый файл записывается:
    1) В нечетных секторах
    2) В произвольных кластерах
    3) Обязательно в последовательно расположенных секторах
    4) В четных секторах

    16. Драйверы устройств:
    1) это аппаратные средства, подключенные к компьютеру для осуществления операций ввода/вывода;
    2) это программные средства, предназначенные для подключения устройств ввода/вывода;
    3) это программа, переводящая языки высокого уровня в машинный код;
    4) это программа, позволяющая повысить скорость работы пользователя на
    17. Прикладные программы
    1) Программы, предназначенные для решения конкретных задач
    2) Управляют работой аппаратных средств и обеспечивают услугами нас и наши прикладные комплексы
    3) Игры, драйверы и трансляторы
    4) Программы, которые хранятся на дискетах
    18. Операционная система выполняет функции:
    1) обеспечения организации и хранения файлов;
    2) организации диалога с пользователем, управления аппаратурой и ресурсами компьютера;
    3) обмена данными между компьютером и различными периферийными устройствами;
    4) подключения устройств ввода/вывода.
    19. В процессе загрузки операционной системы происходит:
    1) Копирование файлов операционной системы с гибкого диска на жесткий диск
    2) Копирование файлов операционной системы с CD диска на жесткий диск
    3) Последовательная загрузка файлов операционной системы в оперативную память
    4) Копирование содержимого оперативной памяти на жесткий диск
    20. Системный диск необходим для:
    1) Загрузки операционной системы
    2) Защиты компьютера от вирусов
    3) Создания программ с использованием графического интерфейса
    4) Архивации и разархивации файлов
    21. Вершиной иерархической системы папок графического интерфейса Windows является папка:
    1. корневого каталога диска
    2. мой компьютер
    3. сетевое окружение
    4. Рабочий стол
    22. Диалоговое окно в Windows предназначено для
    1) диалога между пользователем и компьютером;
    2) удаления программы;
    3) отображения пиктограммы программы;
    4) отображения названия программы.

    23. В Windows не существует
    1) окон программ;
    2) окон тестирования;
    3) диалоговых окон;
    4) окон документов.
    24. Компьютерные вирусы это…
    1) Программы, которые могут размножаться и выполнять вредные действия по уничтожению программ и данных
    2) Программы, которые могут заражать телепрограммы
    3) Вирусы, которые опасны для здоровья человека

    Глава 2
    Технология обработки графической информации
    31. Все компьютерные изображения разделяют на два типа:
    1. растровые и векторные
    2. черно – белые и цветные
    3. сложные и простые
    32. Растровое изображение создается с использованием…
    1. точек различного цвета (пикселей)
    2. линий
    3. окружностей
    4. прямоугольников
    33. Векторные изображения формируются из…
    1. объектов, которые называются графическими примитивами
    2. точек различного цвета (пикселей)
    3. строк и столбцов
    4. рисунков и фотографий
    34. Для обработки цифровых фотографий и отсканированных изображений наилучшим средством служит…

    35. Для создания рисунков, схем и чертежей наилучшим средством служит…
    1. растровый графический редактор
    2. векторный графический редактор
    3. система компьютерного черчения
    36. Форматы графических файлов определяют …
    1. Способ и форму хранения информации в файле
    2. Качество изображения
    3. Объем изображения
    4. Размерность изображения
    37. В векторном графическом редакторе нарисованный объект…
    1. Продолжает сохранять свою индивидуальность, и его можно масштабировать и перемещать по рисунку
    2. перестает существовать как самостоятельный элемент после окончания рисования и становится лишь группой пикселей на рисунке.
    38. Наиболее распространенными приложениями для разработки презентаций является…
    1. Microsoft Power Point
    2. Microsoft Access
    3. Microsoft Excel
    4. Microsoft Word
    39. Файлы презентаций могут сохраняться в формате…
    1. ppt
    2. psd
    3. tiff
    4. doc

    Информацию, существенную и важную в настоящий момент, называют: 1) полной; 2)полезной; 3)актуальной; 4)достоверной. 2. Тактильную информацию человек

    получает посредством: 1) специальных приборов; 2) органов осязания; 3) органов слуха; 4) термометра. 3. Примером текстовой информации может служить: 1)таблица умножения на обложке школьной тетради; 2)иллюстрация в книге; 3)правило в учебнике родного языка; 4)фотография; 4. Перевод текста с английского языка на русский язык можно назвать: 1) процессом хранения информации; 2) процессом получения информации; 3) процессом защиты информации; 4) процессом обработки информации. 5. Обмен информацией – это: 1) выполнение домашней работы; 2) просмотр телепрограммы; 3) наблюдение за поведением рыб в аквариуме; 4) разговор по телефону. 6. Система счисления - это: 1) знаковая система, в которой числа записываются по определенным правилам с помощью символов (цифр) некоторого алфавита; 2) произвольная последовательность цифр 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 3) бесконечна последовательность цифр 0, 1; 4) множество натуральных чисел и знаков арифметических действий. 7. Двоичное число 100012 соответствует десятичному числу: 1) 1110 2) 1710 3) 25610 4)100110 8. Число 2410 соответствует числу: 1) 1816 2) ВF16 3) 2016 4)1011016 9. За единицу количества информации принимается: 1) 1 байт; 2) 1 бит; 3) 1 бод; 4) 1 см. 10. Какое из устройств предназначено для ввода информации: 1) процессор; 2) принтер; 3) клавиатура; 4) монитор. 11. Компьютерные вирусы: 1) возникают в связи сбоев в аппаратной части компьютера; 2) имеют биологическое происхождение; 3) создаются людьми специально для нанесения ущерба ПК; 4) являются следствием ошибок в операционной системе. 12. Алгоритм – это: 1) правила выполнения определенных действий; 2) набор команд для компьютера; 3) протокол для вычислительной сети; 4) описание последовательности действий, строгое исполнение которых приводит к решению поставленной задачи за конечное число шагов. 13. Свойство алгоритма, заключающееся в отсутствии ошибок, алгоритм должен приводить к правильному результату для всех допустимых входных значений, называется: 1) результативность; 2) массовость; 3) дискретность; 4) конечность. 14. Свойство алгоритма, заключающееся в том, что один и тот же алгоритм можно использовать с различными исходными данными, называется: 1) результативность; 2) массовость; 3) конечность; 4) детерминированность. 15. Текстовый редактор – программа, предназначенная для: 1) создания, редактирования и форматирования текстовой информации; 2) работы с изображениями в процессе создания игровых программ; 3) управление ресурсами ПК при создании док3ументов; 4) автоматического перевода с символьных языков в машинные коды. 16. К числу основных функций текстового редактора относятся: 1) копирование, перемещение, уничтожение и сортировка фрагментов текста; 2) создание, редактирование, сохранение и печать текстов; 3) строгое соблюдение правописания; 4) автоматическая обработка информации, представленной в текстовых файлах. 17. Курсор – это: 1) устройство ввода текстовой информации; 2) клавиша на клавиатуре; 3) наименьший элемент отображения на экране; 4) метка на экране монитора, указывающая позицию, в которой будет отображен текст, вводимый с клавиатуры. 18. Форматирование текста представляет собой: 1) процесс внесения изменений в имеющийся текст; 2) процедуру сохранения текста на диске в виде текстового файла; 3) процесс передачи текстовой информации по компьютерной сети; 4) процедуру считывания с внешнего запоминающего устройства ранее созданного текста. 19. Текст, набранный в текстовом редакторе, хранится на внешнем запоминающем устройстве: 1) в виде файла; 2) таблицы кодировки; 3) каталога; 4) директории. 20. Одной из основных функций графического редактора является: 1) ввод изображения; 2) хранение кода изображения; 3) создание изображений; 4) просмотр вывод содержимого видеопамяти. 21. Элементарным объектом, используемым в растровом графическом редакторе, является: 1) точка экрана (пиксель); 2) прямоугольник; 3) круг; 4) палитра цветов. 22. Электронная таблица – это: 1) прикладная программа, предназначенная для обработки структурированных в виде таблицы данных; 2) прикладная программа для обработки изображений; 3) устройство ПК, управляющее его ресурсами в процессе обработки данных в табличной форме; 4) системная программа, управляющая ресурсами ПК при обработке таблиц. 23. Электронная таблица представляет собой: 1) совокупность нумерованных строк и поименованных буквами латинского алфавита столбцов; 2) совокупность поименованных буквами латинского алфавита строк и столбцов; 3) совокупность пронумерованных строк и столбцов; 4) совокупность строк и столбцов, именуемых пользователем произвольным образом. 24. Выберите верную запись формулы для электронной таблицы: 1) С3+4*Е 2) С3=С1+2*С2 3) А5В5+23 4) =А2*А3-А4

    Фотография как источник изображений в цифровой форме может быть оцифрована с помощью сканера и в последующем обработана с помощью редактора изображений наподобие Photoshop. Здесь же мы остановимся на цифровых фотокамерах.

    Беспленочные (цифровые) камеры очень похожи на традиционные фотокамеры: в камерах обоих типов имеются объектив, затвор и диафрагма. Фактически, в некоторых профессиональных беспленочных камерах используются готовые корпуса от 35 миллиметров аппаратов Nikon, Minolta или Canon. Различие же состоит во внутреннем устройстве или в способе сохранения изображения.

    В традиционных фотокамерах изображение фокусируется на пленке, покрытой светочувствительным слоем кристаллов галоидного серебра. Затем пленка последовательно погружается в растворы химических реактивов для проявления и фиксации отснятого изображения.

    В цифровых камерах изображение фокусируется на фоточувствительном кристалле полупроводника, называемом прибором с зарядовой связью (ПЗС). Прибор с зарядовой связью применяются также в сканерах, факсимильных аппаратах и видеокамерах, хотя обычно качество большинства приборов с зарядовой связью для беспленочных камер выше и такие приборы, безусловно, дороже.

    Мультимедийные приложения и оборудование

    Мультимедиасистемы в своей основе представляют собой аппаратно-программные средства интерактивного доступа к массивам и базам данных разноформатной (мультимедийной) информации, основными среди которых являются звук, фото (статическое изображение) и видео (динамическое изображение). Мультимедийные системы не отрицают интеграцию с классическими видами данных - табличные (базы данных) и текстовые (информационно-поисковые системы), но основная нагрузка при разработке мультимедийных приложений и их использовании приходится на перечисленные основные виды.

    Процессы обработки мультимедийной информации и функции соответствующих информационных технологий систем, как обычно, включают следующие этапы - сбор и получение информации, обработка, редактирование, хранение и поиск, выдача и представление пользователям. Сразу оговоримся, что проблема поиска мультимедийной информации весьма далека от своего решения, поскольку требует высокой формализации ее представления (хотя такие попытки и известны, например, мультимедийный стандарт MPEG-7 или более известный аудиоформат MIDI). Поэтому здесь речь пойдет в основном о проблемах получения мультимедиаинформации в цифровой форме, преобразовании в компактное представление (сжатие), редактировании, выходном представлении.

    Прибор с зарядовой связью

    Приборы с зарядовой связью, или charge coupled device (CCD), - технология, лежащая в основе большинства цифровых камер, была предложена еще в 1960 годах, когда шли поиски недорогих систем памяти для массового производства. Возможность использования приборов с зарядовой связью для съемки изображений даже не приходила в голову исследователям, работавшим над технологией первоначально.

    В 1969 году У. Бойл и Джон Смит (Bell Labs) предложили использовать приборы зарядовой связи для хранения данных. Первое применение приборов для съемки - матрица с форматом 200 х 200 пикселей - была создана в 1974 году в Fairchild Electronics. В следующем году такие устройства уже использовались в телекамерах для коммерческих передач и скоро стали обычными в телескопах и медицинских системах.

    Прибор зарядовой связи работает подобно электронной версии человеческого глаза. Каждая матрица состоит из миллионов ячеек, известных как фототочки или фотодиоды, которые преобразуют оптическую информацию в электрический заряд. Когда световые частицы (фотоны) входят в кремний фотодиода, они обеспечивают достаточно энергии Для генерации свободных электронов, число которых возрастает с потоком света. Если к фотодиоду приложено внешнее напряжение, возникает электрический ток.

    Следующая стадия заключается в прохождении токов через устройство, известное как регистр считывания. После того как заряд входит и затем выходит из регистра считывания, он исчезает и на его место перемещается следующий сзади. Так образуется последовательность сигналов, которые передаются на усилитель, а затем - аналого-цифровой преобразователь.

    Фотодиоды матрицы ПЗС фактически реагируют на яркость, а не на цвета освещения. Цвет добавляется к изображению посредством красных, зеленых и синих фильтров, помещенных поверх каждого пикселя. Поскольку человеческий глаз наиболее чувствителен к желто-зеленому диапазону, количество зеленых фильтров в 2 раза больше, чем красных и синих. Каждый пиксель представляет только один цвет, и истинный цвет создается путем усреднения световой интенсивности окружающих пикселей - процесс, известный как цветовая интерполяция.

    Сжатие видеоинформации

    Видеосжатие - метод удаления настолько больших фрагментов данных, насколько это возможно без снижения качества. Методы видеосжатия обычно приводят к потерям - то есть, результат расшифровки не идентичен первоначально закодированному сигналу. Сокращая видеоразрешение, цветовую глубину и частоту кадров, компьютеры сначала управляли окнами размером в почтовую марку, но затем были изобретены методы, чтобы представить изображения более эффективно и уменьшить объем данных, не затрагивая размеры изображения.

    Методы с потерями уменьшают объем потока данных как путем сложного математического шифрования, так и через намеренную выборочную потерю визуальной информации, которую человеческий глаз или мозг обычно игнорирует, и могут вести к ощутимой потере качества фильма. Сжатие «без потерь», наоборот, удаляет только избыточную информацию. Кодеки обеспечивают отношения сжатия в пределах от слабого (2:2) до очень сильного (200:2), создавая возможность иметь дело с огромными количествами видеоданных. Чем выше отношение сжатия, тем хуже выходное изображение. Цветовая достоверность исчезает, на картине появляются артефакты и шумы, границы объектов размываются, и в конечном счете результат оказывается «несмотрибельным».

    К концу 2990 годов. основные методы базировались на алгоритме с тремя стадиями, известном как дискретное косинусное преобразование (ДКП или DСТ).

    Дискретное косинусное преобразование использует факт, что рядом расположенные пиксели - или геометрически (смежные на одном кадре), или во времени (в последовательных изображениях) - могут иметь аналогичные значения. Математическое преобразование (сходное с преобразованием Фурье) выполняется на блоках размера 8х8 пикселей. Затем осуществляется изменение весовых коэффициентов различных частотных составляющих сигнала. Общепринято, что для визуальных систем низкочастотные компоненты более важны, чем высокочастотные, поэтому удаляются те из них, которые наименее искажают визуальную информацию в зависимости от требуемого уровня сжатия. Например, потеря 50 процентов преобразованных данных может кончиться потерей только 5 процентов визуальной информации. Затем производится энтропийное зашифровывание (технология без потерь), которая удаляет все действительно ненужные биты.

    Так как для сброса заряда сенсора требуется некоторое время (равно как и для чтения информации и установки параметров), всегда существует некоторая неизбежная задержка между полным нажатием на клавишу затвора и временем съемки изображения. На рядовой любительской цифровой камере эта задержка начинается от 60 миллисекунд (этот промежуток настолько мал, что вы вряд ли его заметите) до 1 секунды.

    Использование больших буферов памяти и скоростных процессоров может уменьшить задержку, по этой причине дорогие фотоаппараты снимают быстрее своих дешевых собратьев. Среди самых дорогих профессиональных камер можно выделить новый Nikon DH1 с 128 Мб буфером. Другие камеры типа Kodak DCS 520, 620 и Fuji S1 оснащены 64 Мб буфером. Очень небольшое количество профессиональных и high-end любительских камер оснащено буферами размером 16 Мб или 32 Мб.

    Кроме того, ряд сенсоров (особенно КМОП) являются многофункциональными чипами с некоторым встроенным интеллектом, что помогает им уменьшать время, затрачиваемое на передачу и на обработку полученной информации. Подобно любой другой цифровой системе, цифровая камера работает тем быстрее, чем выше ее внутренняя пропускная способность.

    Когда сенсор преобразует попавшие на него фотоны в электроны, то он работает с аналоговыми данными. Следующим шагом является снятие сохраненных электрических сигналов из пикселей и дальнейшее их преобразование в электрический ток посредством встроенного выходного усилителя. Ток посылается на внешний или встроенный аналого-цифровой преобразователь (АЦП).

    Одним из главных отличий между КМОП и ПЗС сенсорами является то, что в КМОП сенсоре АЦП интегрирован, а при использовании ПЗС сенсора он находится на внешнем чипе. Но по этой же причине КМОП сенсор более зашумлен. АЦП преобразует различные уровни напряжения в двоичные цифровые данные. Цифровые данные подвергаются дальнейшей обработке и организуются в соответствии с битовой глубиной цвета для красного, зеленого и синего каналов, что выражается в интенсивности данного цвета для выбранного пикселя.

    Разберемся с терминологией

    Некоторые могут неправильно интерпретировать термин "битовая глубина цвета". Для понимания этого термина рассмотрим основы цифрового цвета. Все цвета в цифровом фотоаппарате создаются с помощью комбинации интенсивности (или битовых значений) трех главных цветов - красного, зеленого и синего. Эти три главные цвета также называются каналами.

    Битовая глубина может быть определена для каждого из трех каналов (например, 10 бит, 12 бит и т.д.) или для всего спектра, при этом битовые значения каналов умножаются на три (30 бит, 36 бит и т.д.) Однако в мире приняты зачастую нелогичные соглашения по терминологии, поэтому вам придется кое-что просто запомнить. Например, 24-битный цвет (который иногда также называют True Color, так как он первым в цифровом мире приблизился по количеству цветов к уровню восприятия человеческого глаза) отводит по 8 бит на каждый канал.

    Но 24-битный цвет никогда не называют 8-битным цветом. Если вы услышите, что кто-то говорит о 8-битном цвете, то он вовсе не имеет в виду 8 бит на канал. Скорее всего, этот человек подразумевает 8 бит на весь спектр, что дает 256 различных цветов (очень ограниченный спектр, кстати). 24-битный же цвет дает возможность отобразить 16,7 млн различных оттенков. Поэтому лучше всего принять 24-битный цвет как разделительную линию: если количество бит в спектре больше 24, то принято называть такую битовую глубину по количеству бит на весь спектр или по количеству бит на канал. Если же количество бит 24 или меньше, то такую битовую глубину лучше называть по количеству бит в полном спектре.

    До прошлой осени почти все любительские цифровые фотоаппараты работали с 24-битным цветом (используя 8-битные АЦП). Сейчас уже появились некоторые модели, типа Olympus E-10 и HP PhotoSmart 912, которые могут работать 30 или 36-битным цветом (используя 10 или 12-битные АЦП). Впрочем, некоторые цифровые фотоаппараты, способные снимать с большей глубиной цвета, используют 8-битные АЦП, что приводит к выводу изображения только с 24-битной глубиной. (Небольшое число камер, типа Canon PowerShot G1, могут записывать 36-битное изображение в формате RAW, но этот формат патентован, и он не может быть считан напрямую ни одной программой редактирования изображений. Хотя Photoshop и понимает изображения с глубиной вплоть до 16 бит на канал, его функциональность в таких случаях ограничена. Программное обеспечение для работы с камерой Canon должно сначала преобразовать файл в TIFF, который уже можно будет загрузить в Photoshop. Еще одна неприятная вещь: с такими файлами не будет работать большинство устройств вывода). Возникает закономерный вопрос: зачем нам нужно снимать с такой глубиной цвета, если нам будет очень трудно или даже невозможно использовать такие изображения? Все дело в том, что чем больше битовая глубина цвета, тем больше деталей и градаций оттенков мы получим, особенно это касается затененных и ярко освещенных объектов. Здесь существует интересное решение. Как только камера (или ее программное обеспечение) получит данные, она может проанализировать их и при преобразовании изображения в 24-битное фотоаппарат попытается сохранить правильные цвета на самых критических участках.

    Если в камере используется хороший алгоритм, то в результате получится лучшее изображение (по диапазону полутонов и по детализации в ярко освещенных областях и тенях), чем если бы камера изначально получала 24-битное изображение и потом его записывала. Большая глубина цвета (производная от глубины получаемого на сенсоре цвета и АЦП) является одной из характеристик, отличающих профессиональные цифровые камеры от любительских и полу-профессиональных (в дополнение к лучшей оптике и большим возможностям профессиональных устройств). По этой же причине, даже если цифровые фотоаппараты <$1000 оснащаются сенсором с большим разрешением чем камера за $10 000, это отнюдь не означает, что менее дорогой фотоаппарат будет получать такие же качественные снимки.

    АЦП передает поток цифровых данных на чип цифрового процессора сигналов (DSP). В некоторых камерах используется несколько DSP. В чипе DSP данные преобразуются в изображение на основе определенных инструкций. Эти инструкции включают в себя определение координат полученных от сенсора точек и присвоение им цвета по черно-белой и цветной шкале. В камерах с одним сенсором, использующим массив цветных светофильтров, применяются алгоритмы присвоения цветов с учетом мозаичного расположения пикселей.

    Лучше всего представлять расположение массива цветных светофильтров как мозаику, составленную из трех или четырех основных или дополнительных цветов. Из этих цветов создаются все остальные оттенки. Алгоритмы преобразования анализируют соседние пиксели для определения цвета данного пикселя. Таким образом, в итоге получается изображение, похожее на то, если бы мы создавали его от трех физически разделенных сенсоров (если используются цвета RGB). Поэтому в результате изображение передает естественные цвета и переходы между ними.

    Кроме описанного процесса, DSP отвечает за разрешение изображения. Хотя большинство цифровых фотоаппаратов можно настроить на различные разрешения, внутри себя они будут получать и обрабатывать данные исходя от разрешения сенсора. Например, при VGA съемке на 3 Мегапиксельной цифровой камере, она будет выполнять съемку в разрешении 2048x1548, а не в 640x480. Далее DSP переведет (интерполирует) изображение в выбранное фотографом разрешение (кстати, разрешение выбирается через операционную систему с помощью ЖК дисплея или панели управления, или при нажатии соответствующей клавиши).

    Однако некоторые сенсоры (как правило, КМОП) могут выборочно отсеивать пиксели вместо интерполирования, таким образом, выбирая меньшее или большее разрешение прямо во время съемки. Такая возможность КМОП сенсоров связана с подобной ОЗУ структурой, благодаря чему сенсор может выбрать требуемые данные через быстрый доступ по строке/столбцу. В отличие от КМОП сенсора, ПЗС сенсор является устройством последовательного вывода данных, он должен непременно передать все данные, а уже потом процессор камеры сам будет осуществлять интерполяцию. Обычно использование КМОП сенсора, который может снимать только нужные данные, позволяет ускорить время обработки изображения в фотоаппарате.

    Кстати, алгоритм преобразования изображения в требуемое разрешение обычно держится производителями в секрете, так что он зависит от конкретной модели фотоаппарата. Другими словами, DSP осуществляет улучшение изображения в зависимости от параметров, заданных производителем. Таким образом, изображение, созданное любой камерой, является уникальным. Оно реализует свой баланс цветов и свою насыщенность (которые производитель счел наилучшими). Некоторые производители предпочитают добавлять теплые (розоватые) цвета, другие, наоборот, - холодные (голубоватые). Третьи выбирают нейтральную, реалистичную насыщенность для более аккуратной передачи цветов. (Производитель выбирает цвета и насыщенность в каждой модели на основе своих предположений о том, какие цвета и оттенки больше понравятся среднему покупателю. Такой выбор редко бывает случайным, чаще всего он базируется на основе выбранного корпоративного дизайна).

    Что такое фотография.

    Фотогра́фия (фр. photographie от др.-греч. φως / φωτος — свет и γραφω — пишу; светопись — техника рисования светом ) — получение и сохранение статичного изображения на светочувствительном материале (фотоплёнке или фотографической матрице ) при помощи фотокамеры .

    Также фотографией или фотоснимком, или просто снимком называют конечное изображение, полученное в результате фотографического процесса и рассматриваемое человеком непосредственно (имеется в виду как кадр проявленной плёнки, так и изображение в электронном или печатном виде).

    В зависимости от принципа работы светочувствительного материала фотографию принято делить на три больших подраздела:

    Плёночная фотография — основана на фотоматериалах, в которых происходят фотохимические процессы.

    Цифровая фотография — в процессе получения и сохранения изображения происходят перемещения электрических зарядов (обычно в результате фотоэффекта и при дальнейшей обработке), но не происходит химических реакций или перемещения вещества. Правильнее было бы называть такую фотографию электронной, так как в ряде устройств, традиционно относимых к «цифровым», происходят аналоговые процессы.

    Электрографические и иные процессы, в которых не происходит химических реакций, но происходит перенос вещества, образующего изображение. Специального общего названия для этого раздела не выработано, до появления цифровой фотографии часто употреблялся термин «бессеребряная фотография».

    Принцип действия

    Принцип действия фотографии основан на получении изображений и фиксировании их с помощью химических и физических процессов, получаемых с помощью света, то есть электромагнитных волн, излучаемых непосредственно или отражённых.

    Изображения с помощью отражённого от предметов видимого света получали ещё в глубокой древности и использовали для живописных и технических работ. Метод, названный позже ортоскопической фотографией, не требует серьёзных оптических приспособлений. В те времена использовались лишь малые отверстия и, иногда, щели. Проектировались изображения на противоположные от этих отверстий поверхности. Далее метод был усовершенствован с помощью оптических приборов, помещаемых на место отверстия. Это послужило основой для создания камеры, ограничивающей получаемое изображение от засветки не несущим изображение светом. Камера была названа обскурой, изображение проецировалось на её заднюю матовую стенку и перерисовывалось по контуру художником. После изобретения методов химической фиксации изображения, камера-обскура стала конструктивным прообразом фотографического аппарата. Название «фотография» было выбрано как наиболее благозвучное из нескольких вариантов во Французской академии в 1839 году.

    Виды фотографии

    Чёрно-белая фотография

    Чёрно-белая фотография — исторически первый вид фотографии. После появления цветной, а затем и цифровой фотографии, чёрно-белые снимки сохранили свою популярность. Зачастую цветные фотографии преобразуются в чёрно-белые для получения художественного эффекта.

    Цветная фотография

    Цветная фотография появилась в середине XIX века . Первый устойчивый цветной фотоснимок был сделан в 1861 году Джеймсом Максвеллом по методу трехцветной фотографии (метод цветоделения).

    Для получения цветного снимка по этому использовались три фотокамеры с установленными на них цветными светофильтрами (красным, зелёным и синим ). Получившиеся снимки позволяли воссоздать при проекции (а позднее, и в печати) цветное изображение.

    Вторым важнейшим шагом в развитии метода трехцветной фотографии стало открытие в 1873 г. немецким фотохимиком Германом Вильгельмом Фогелем сенсибилизаторов, то есть веществ, способных повышать чувствительность серебряных соединений к лучам различной длины волны. Фогелю удалось получить состав, чувствительный к зелёному участку спектра .

    Практическое применение трехцветной фотографии стало возможным после того, как ученик Фогеля, немецкий ученый Адольф Мите разработал сенсибилизаторы, делающие фотопластину чувствительной к другим участкам спектра. Он также сконструировал фотокамеру для трехцветной съемки и трехлучевой проектор для показа полученных цветных снимков. Это оборудование в действии впервые было продемонстрировано Адольфом Мите в Берлине в 1902 г.

    Большой вклад в дальнейшее совершенствование метода трехцветной фотографии внёс ученик Адольфа Мите Сергей Прокудин-Горский , разработавший технологии, позволяющие уменьшить выдержку и увеличить возможности тиражирования снимка. Прокудин-Горский также открыл в 1905 г. свой рецепт сенсибилизатора, создававшего максимальную чувствительность к красно-оранжевому участку спектра, превзойдя в этом отношении А.Мите.

    Наряду с методом цветоделения с начала XX века стали активно развиваться и другие процессы (методы) цветной фотографии. В частности, в 1907 году были запатентованы и поступили в свободную продажу фотопластины «Автохром » Братьев Люмьер , позволяющие относительно легко получать цветные фотографии. Несмотря на многочисленные недостатки (быстрое выцветание красок, хрупкость пластин, зернистость изображения), метод быстро завоевал популярность и до 1935 г. в мире было произведено 50 млн автохромных пластинок.

    Альтернативы этой технологии появились только в 1930-х годах: Agfacolor в 1932 году , Kodachrome в 1935 , Polaroid в 1963 .

    Цифровая фотография

    Цифровая фотография — относительно молодая, но популярная технология, зародившаяся в 1981 году , когда компания Sony выпустила на рынок камеру с ПЗС-Матрицей , записывающей снимки на диск. Этот аппарат не был цифровым в современном понимании (на диск записывался аналоговый сигнал), однако позволял отказаться от фотоплёнки. Первая полноценная цифровая камера — была выпущена в 1990 году компанией Kodak .

    Принцип работы цифровой камеры заключается в фиксации светового потока матрицей и преобразования этой информации в цифровую форму.

    В настоящее время цифровая фотография повсеместно вытесняет плёночную в большинстве отраслей.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама